Assessment Schedule – 2017

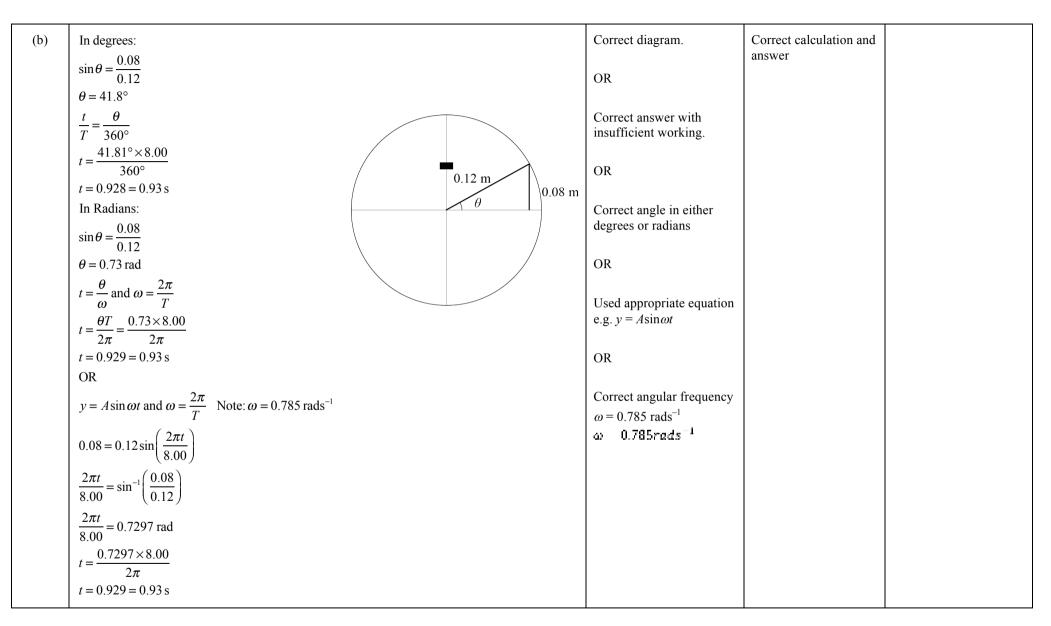
Physics: Demonstrate understanding of mechanical systems (91524)

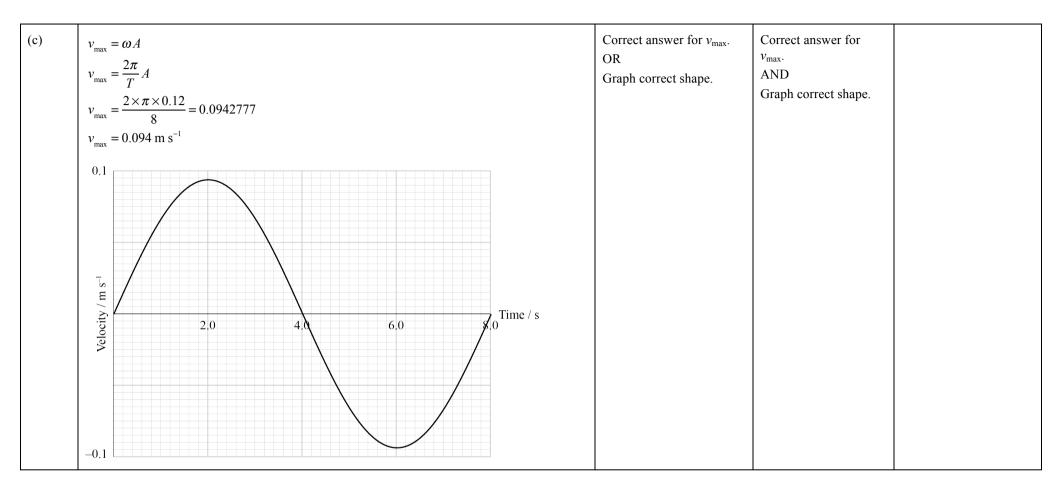
Evidence Statement

NØ	N1	N2	A3	A4	M5	M6	E7	E8
0	1A	2A or 1M	3A or 1A +1M or 1E-	4 A or 2A + M or 2M or 1A+1E-	1A + 2M or 1M+1E- or 3A +1M or 2A + 1E-	2A + 2M or 3M or 3A + 1E- or 1A +1M + 1E-	2M+1E- or 2A +1M + 1E- or A + 2M + 1E-	A + 2M +E

Other combinations are also possible using a=1, m=2 and e=3. However, for M5 and M6, at least one Merit question needs to be correct (maximum 6). For E7 or E8, at least one Excellence needs to be correct (maximum 8). Note: E- and E only applies to the E7 and E8 decision.

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	4.80 m x com 105 kg $m_1 x = m_2(4.80 - x)$ 105 × $x = 95.0 \times 4.80 - 95.0 \times x$ 200 × $x = 95.0 \times 4.80$ $x = \frac{95.0 \times 4.80}{200} = 2.28 \text{ m}$ OR $x_{com} = \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}$ $x_{com} = \frac{105 \times 0 + 95.0 \times 4.80}{105 + 95.0}$ $x_{com} = 2.28 \text{ m}$	Correct method with incorrect calculation.	Correct answer.	


(b)	The centre of mass keeps moving at constant velocity.	Correct answer.		
(c)	$p_{\text{sam}} = 105 \times 1.2 = 126 \text{ kg m s}^{-1}$ $p_{\text{Sylvia}} = 95 \times 1.4 = 133 \text{ kg m s}^{-1}$ $\Sigma p = \sqrt{126^2 + 133^2} = 183 \text{ kg m s}^{-1}$ $v = \frac{p}{m} = \frac{183}{200} = 0.92 \text{ m s}^{-1}$	Total momentum calculated correctly. OR Correct method with two dimensional momentum but allow follow on error for A.	Total momentum and speed calculated correctly.	


(d)(i)		Combines $F_{\rm g}$ and $F_{\rm C}$.	Error in the calculation.	Correct calculation and correct
(u)(i)	$F_{\rm g} = \frac{GmM}{r^2}$ $F_{\rm c} = \frac{mv^2}{r}$ $v = \frac{d}{t} = \frac{2\pi r}{T}$	Combines P_g and P_C .	e.g.: forgot to square T or π	answer for the mass with unit.
		OR	or cube r or add orbital	(E)
	$\frac{GmM}{r^2} = \frac{mv^2}{r}$		radius while substituting.	OR
	GM v^2 $4\pi^2 r^2$	States that gravity supplies the		Complete correct explanation
	$\frac{GM}{r} = \frac{v^2}{1} = \frac{4\pi^2 r^2}{T^2}$	centripetal force.	OR	with links. (E).
	$4\pi^2 r^3 4 \times \pi^2 \times ((351+5220) \times 10^3)^3$	OR	Algebraically makes M the	Correct calculation and correct answer for the mass without
	$M = \frac{4\pi^2 r^3}{GT^2} = \frac{4 \times \pi^2 \times ((351 + 5220) \times 10^3)^3}{6.67 \times 10^{-11} \times (5.46 \times 10^3)^2}$	Uses $F_{\rm g}$, $F_{\rm c}$ and $v = \frac{2\pi r}{T}$ to	subject of the formula correctly.	unit. (E-)
	$M = 3.43 \times 10^{24} \text{ kg}$	1		
	OR	attempt to make M the subject of the formula.	OR	OR
		the formula.	calculates local	
	$mg = \frac{mv^2}{r}$		$g = 7.38 \text{ m s}^{-2}$	Complete explanation with
	$g = a_{c}$	OR		links accepted with minor errors (E-)
	$a_{\rm c} = \frac{v^2}{r}$ and $v = \frac{2\pi}{r}$	Calculates v correctly as	OR	For instance, the candidate has
	$a_c = \frac{r}{r}$ and $v = \frac{r}{r}$	6410 m s^{-1} .	(Two ideas linked) e.g.:	said "speed" and not "linear
	$a_{\rm c} = \frac{4\pi^2 r}{t^2} = \frac{4\pi^2 r \left((351 + 5220) \times 10^3 \right)}{\left(5.46 \times 10^3 \right)^2}$		As the spaceship approaches the planet, it loses	speed"; both linear and
	$a_{\rm c} = \frac{1}{t^2} = \frac{1}{(5.46 \times 10^3)^2}$		gravitational potential energy	rotational speeds exist here.
	$a_c = 7.38 \text{ m s}^{-2}$ and thus local $g = 7.38 \text{ m s}^{-2}$		and gains kinetic energy.	
	•		OR (Two ideas linked) e.g.:	
	$g = \frac{GM}{r^2}$	OR Conditions and at this is	As the spaceship approaches	
	$ar^2 = 7.38((351+5220)\times10^3)^2$	Candidate recognises that this is an Energy Change situation.	the planet, the distance will decrease. This will cause an	
	$M = \frac{gr^2}{G} = \frac{7.38 \left((351 + 5220) \times 10^3 \right)^2}{6.67 \times 10^{-11}}$		increase in the size of the	
	$M = 3.43 \times 10^{24} \text{ kg}$	OR	gravitational pull on the	
	As the magazing annuageness the planet, it losses are vitational restartial	Candidate recognises that	spaceship. OR	
(ii)	As the spaceship approaches the planet, it loses gravitational potential energy and gains kinetic energy. This causes the linear speed to increase.	gravitational force is increasing.	The gravitational force on the	
	OR		spaceship has a component in	
	As the spaceship approaches the planet, the gravitational force increases		the direction of travel; this	
	between them. This results in the planet pulling the spaceship closer to the		will increase the speed.	
	planet. The increase in the gravitational pull from the planet will cause an increase in the linear speed of the spaceship.			
	(The gravitational force on the spaceship has a component in the direction of			
	travel; this will increase the linear speed.)			

Q	Evidence	Achievement	Merit	Excellence
TWO (a)	$\Sigma \tau = I\alpha$ $\Sigma \tau = 58000 \times 0.020$ $\Sigma \tau = 1160$ So the torque produced by one rocket is 580 Nm.	Correct answer.		
(b)	$\omega_f^2 = \omega_i^2 + 2\alpha\theta$ $\omega_f^2 = 0.58^2 - 2 \times 0.020 \times 2\pi$ $\omega_f^2 = 0.085$ $\omega_f = 0.29 \text{ rad s}^{-1}$	correct angle conversion. i.e. $\theta = 2\pi$ OR Correct working except for angle conversion.	Correct calculation and answer.	
(c)	$\Sigma \tau = I \alpha$ As the rockets emit gas, the total mass of the spaceship will decrease. This will cause the rotational inertia to decrease. Torque is constant, so the angular acceleration will gradually increase.	States that decreased mass will cause rotational inertia (RI) to decrease. OR States that angular acceleration increases because RI decreases. Accept inertia in place of rotational inertia.	Decreased mass will cause rotational inertia to decrease. AND Angular acceleration increases because RI decreases. Accept inertia in place of rotational inertia.	

(d)(i)	The mass moves further away from the centre of rotation. This causes the rotational inertia to increase. There is no outside torque, so angular momentum is conserved.	RI increase, so <i>T</i> increase. OR Angular momentum is conserved	Two concepts explained and linked. OR	All concepts explained and linked AND
	$L = I\omega$ so if the rotational inertia increases (changes), the angular speed will decrease (change), causing the period to increase (change).	because there is no net external torque. OR	Calculated the period correctly from an incorrect angular velocity calculated	Correct calculation and correct answer for the period. (E)
(ii)	$L_{i} = L_{f}$ $58000 \times 0.45 = (58000 + 2740) \times \omega$ $\omega = 0.43 \text{ rad s}^{-1}$ $\omega = \frac{2\pi}{T}$	Angular momentum is conserved so angular speed decreases. OR Correct angular speed.	using conservation of angular momentum formula (i.e. follow-on error carried forward)	### Correct calculation and correct answer for the period. (E-) OR All concepts explained and linked. (E-)
	$T = \frac{2\pi}{\omega} = \frac{2\pi}{0.43} = 14.6 \text{ (or } 15\text{) s}$	Accept inertia in place of rotational inertia.	Accept inertia in place of rotational inertia.	Accept inertia in place of rotational inertia.

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	The direction of the restoring force does not change OR the direction of the restoring force remains down OR the restoring force increases as she moves away from equilibrium. OR Accept equations in the explanation (F = -ky) or (F α -y) to this particular situation.	Correct answer.		

(d)	$F = kx$ $k = \frac{F}{x} = \frac{4.4}{0.12} = 36.66 \text{ N m}^{-1}$ $T = 2\pi \sqrt{\frac{m}{k}}$ $8.00^{2} = 4\pi^{2} \frac{m}{36.66}$ $m = 59.4 \text{ kg}$ OR $E_{p} = \frac{1}{2}kx^{2} = \frac{Fx^{2}}{2x} = \frac{Fx}{2} = \frac{4.40 \times 0.120}{2} = 0.264 \text{ J}$ $E_{p} = E_{k} = \frac{1}{2}mv^{2}$ $= \frac{1}{2}m(0.0942777)2 = 0.264$ $m = 59.4 \text{ kg}$ OR $a_{max} = \omega^{2}A$ $a_{max} = (\frac{2\pi}{8})^{2} \times 0.12$ $a_{max} = 0.074 \text{ rad s}^{-2}$ $m = \frac{F}{a_{max}} = \frac{4.4}{0.074}$ The period of oscillation depends on the total mass $T = 2\pi\sqrt{\frac{m}{k}}$. This formula states that if the mass is increased, the period increases also. In order to get the true mass of the action of the period hould be	Correct spring constant. OR Selected the correct period equation. OR Correct energy calculation OR Calculates the maximum acceleration as 0.074 rad s ⁻² . OR States that mass of the seat and / or spring is ignored. OR States that energy is conserved if using energy conversion to find m	Allow M for follow on error for k. OR Allow M for follow on error for v using conservation of energy method. OR Allow M for the follow on error for <i>a</i> _{max} using Newton's second law. OR Simplifying assumption described. E.g. mass of seat (and spring) is ignored because the question stated that the seat was "lightweight". OR Candidate describes assumption that kinetic is the same size as the elastic potential energy.	Correct calculation and correct answer for the total mass AND Two supporting assumptions described (E) Correct calculation and correct answer for the total mass. (E-) OR Three or more simplifying assumptions described and linked. (E-) e.g. Simplifying assumption described. <i>E.g. mass of seat (and spring) is ignored because the question stated that the seat was</i> <i>"lightweight" and because this self-mass is ignored, we get a period lower than expected.</i>
	The period of oscillation depends on the total mass $T = 2\pi \sqrt{\frac{m}{k}}$.			

Cut Scores

Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
0 - 6	7 – 13	14 – 18	19 – 24